Schablonenherstellung

- Kopierschicht-/Kapillarfilmauswahl beim Bedrucken von Glas ist abhängig von:
 - Druckmedium (Lösemittel-, Wasser-, UV)
 - Gewebe
 - Schwerpunkt der Anwendung
 - Entschichtbarkeit
 - Belichtungstechnik (CTS oder konventionell)

Kopierschicht/Kapillarfilm Übersicht

Schablonenherstellung/ Kopiermaterial/ Anwendungsgebiet:		Eigenschaften Kopiermaterial				Empfohlene	Dogondorhoites/
		Beständigk eit		Feststoff (%)	Viskositä		Besonderheiten/ Anmerkungen
	DUVP:						für Flachglas Automotive,
	AZOCOL S 390 Conduct	LM	Blau	38	6000	77 - 150	elektrisch leitfähig, Antistatik
	AZOCOL S 385 Conduct	LM	Blau	36	6500	61 - 90(Variogewebe!)	_
	AZOCOL S 300 + Diazo 1	LM	Blau	42	9800	100 – 180	
	AZOCOL POLY-PLUS HV	LM/ W	Blau	44	11500	21 – 90	3D- und haptische Effekte
	AZOCOL Z 160 HV	LM/ W	Blau	48	17000	21-90	·
	AZOCOL POLY-PLUS S	LM	Violett	35	6700	100 – 180	Konventionell + CTS
	AZOCOL Z 155	LM/W	Blau	37	6500	61 – 150	Konventionell + CTS
	DIAZO:						
	KIWOCOL 18	LM	Blau	28	6500	90 – 150	
	SBQ:						
Flachglas:	POLYCOL S 295 HV	LM	Blau	50	20500	21 - 45	3D- und haptische Effekte
Direktdruck	POLYCOL S 266 CTS	LM	Violett	39	4400	90 - 150	Konventionell + CTS
	Violet						
	POLYCOL Z 542 CTS	LM/ W	Blau	33	4700	<mark>61 – 120</mark>	Konventionell + CTS (hoch reakt.)
	Kapillarfilme DUVP:						
	ULANO CDF Matrix	LM	Grün				
	KIWOFILM S 328 UV	LM	Grün				
	Kapillarfilme DIAZO:						
	ULANO CDF	LM	Grün				
	Kapillarfilme SBQ:						
	KIWOFILM S 245 SBQ	LM	Grün				Konventionell + CTS
	ULANO QT	LM	Rot			12 - 36	

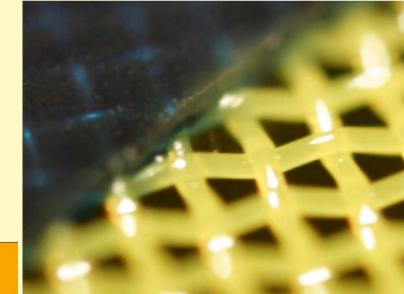
Kopierschicht/Kapillarfilm Übersicht

Schablonenherstellung/ Kopiermaterial/ Anwendungsgebiet:		Eigenschaften Kopiermaterial				Empfohlene	Besonderheiten/
		Beständigk eit	Farbe	Feststoff (%)	Viskositä	Gewebe- feinheiten	Anmerkungen
AZOCO SBQ: POLYO POLYO Violet POLYO Hohlglas: Direktdruck Kapilla ULANO Kapilla ULANO Kapilla	OL S 300 + Diazo 1 OL POLY-PLUS S COL S 295 HV COL S 266 CTS COL Z 542 CTS COL Z 542 CTS COL Z 542 CTS COL Z 542 CTS COL Z 542 CTS COL Z 542 CTS COL Z 542 CTS COL Z 542 CTS COL Z 542 CTS COL Z 542 CTS COL Z 542 CTS COL Z 542 CTS COL Z 542 CTS COL Z 542 CTS COL Z 542 CTS COL Z 542 CTS COL Z 542 CTS	LM LM LM LM/ W	Blau Violett Blau Violett Blau Grün Grün Grün Grün Rot	42 35 50 39 33	9800 6700 20500 4400 4700	100 - 180 100 - 180 21 - 45 90 - 150 61 - 120	Sehr gute Auflösung Gute Elastizität 3D- und haptische Effekte Konventionell + CTS (hoch reakt.)

Kopierschicht/Kapillarfilm Übersicht


Schablonenherstellung/ Kopiermaterial/ Anwendungsgebiet:		Eigenschaften Kopiermaterial				Empfohlene	December de la
		Beständigk eit	Farbe	Feststoff (%)		Gewebe- feinheiten	Besonderheiten/ Anmerkungen
Hohlglas: Abschiebebild	DUVP: AZOCOL POLY-PLUS S AZOCOL S 309 AZOCOL POLY-PLUS HV SBQ: POLYCOL S 295 HV POLYCOL S 266 CTS Violet Kapillarfilme DUVP: KIWOFILM S 328 UV Kapillarfilme DIAZO: ULANO CDF Kapillarfilme SBQ: KIWOFILM S 245 SBQ ULANO QT	LM LM LM/ W LM LM LM LM LM	Violett Blau Hellblau Blau Violett Grün Grün Grün Rot	34 37 44 50 39	6700 6700 11500 20500 4400	100 - 180 100 - 180 21 - 90 21- 45 90- 150	Gute Elastizität Sehr leichte Entschichtbarkeit 3D- und haptische Effekte 3D- und haptische Effekte CTS-Belichtungssysteme

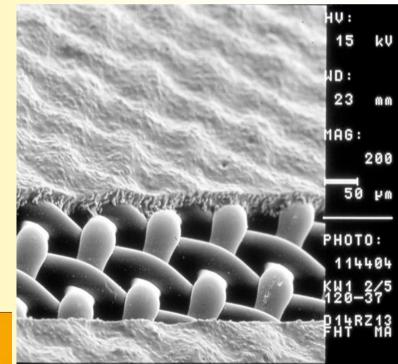
Schablonenreinigung

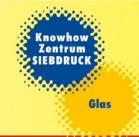


Lösemittel		Eig	genschaften	Empfohlene	Besonderheiten/		
	Flammpunkt Destillierbar 57 °C Ja		Verdunstung	Manuell	Anlage	Farbsysteme Universell	
KIWOCLEAN LM 667			Schnell, rückstandslos	Ja	Ja		Biologisch abbaubar; auch für wässrige Farben
KIWOCLEAN LM 657	60 °C	Sehr gut	Schnell, rückstandslos	Ja	Ja	Universell	Auch für wässrige Farben
KIWOCLEAN LM 790 E	VOCLEAN LM 790 E 86 °C Schwierig Langsam, Emulgator hinterlässt Rückstände		Nein	Ja	Universell	Biologisch abbaubar; Emulgatorhaltig; auch für wässrige Farben. Ideal auch zur Zwischenreinigung vor der Entschichtung	
KIWOCLEAN LM 612	43 °C	Sehr gut	Sehr schnell, rückstandslos	Ja	Ja*	Lösemittel- und UV- Farben	Ideal zur Reinigung am Drucktisch

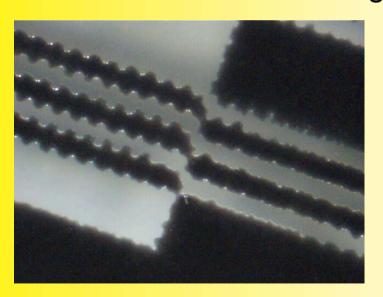
*mit entsprechender Zulassung

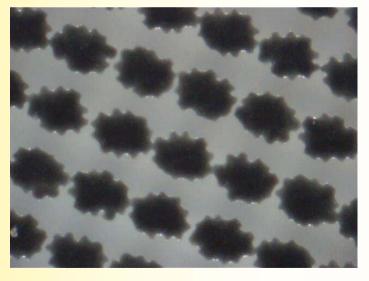
- Korrekte Schablonenherstellung
 - ein wichtiger Schlüssel zur erfolgreichen Bedruckung des Werkstoffs Glas



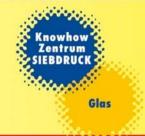


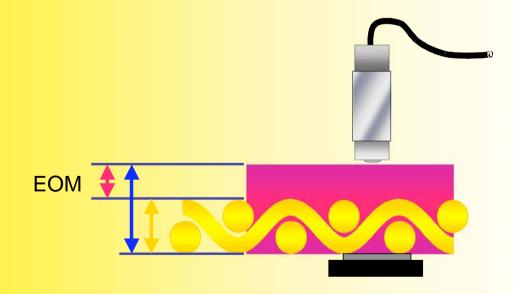
- Häufige Fehlerursachen bei der Schablonenherstellung
 - Falsche Beschichtungstechnik
 - Beschichtungshübe Druckseite/Rakelseite
 - Falsche Beschichtungsrinne
 - Rinnenradius
 - Falsche Emulsions-/Kapillarfilmauswahl
 - Feststoffgehalt, Kapillarfilmdicke

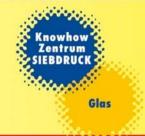



 Beispiel für eine inkorrekte Schablonenherstellung

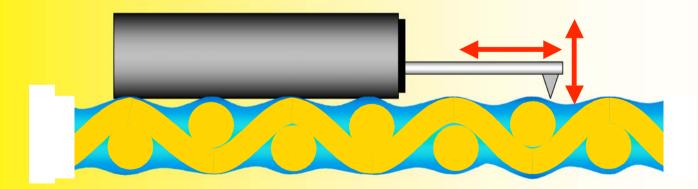
 Druckergebnisse bei inkorrekter Schablonenherstellung


- Vorbeugende Maßnahmen zur Problemvermeidung
 - Anpassen des EOM an die Gewebefeinheit
 - Reduzieren das RZ-Wertes
 - Schablonenherstellung mit Kapillarfilm
 - Schablonenherstellung mit Sefar PCF-Gewebe


- Anpassen des EOM an die Gewebefeinheit
 - Bei Strich und groben Rastern ca. 20 % der Gewebedicke (Feststoff der Druckmedien < 50 %)
 - Bei feinen Rastern 5 10 % der Gewebedicke (Feststoff der Druckmedien < 50 %)
 - Bei Druckmedien mit höherem Feststoff 5 10 % der Gewebedicke (z. B. UV-Farben)

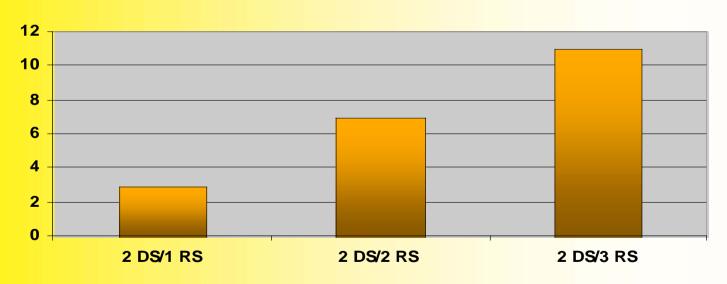


- Bei Spezialanwendungen sollten zusätzliche Parameter berücksichtigt werden:
 - Pigmentgröße
 - Verhältnis EOM zu Pigmentgröße = 2:1
 - Motivgröße
 - Verhältnis EOM zu Motivgröße = 1:2

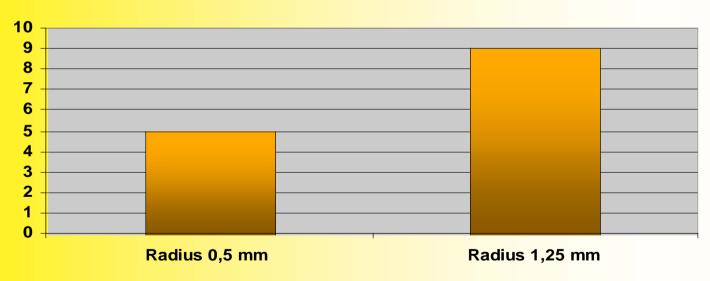


 Messung der Schablonenaufbaudicke (EOM) nach magnetinduktiver Messmethode

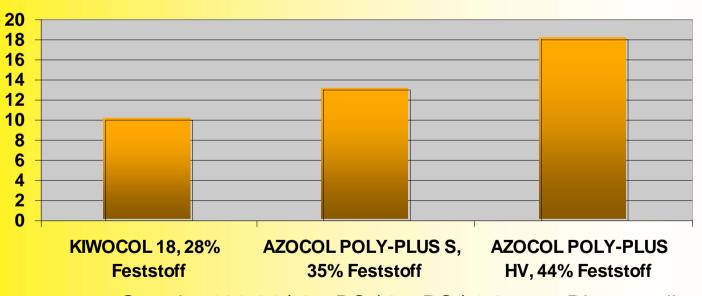
Messung der Oberflächenrauigkeit (Rz-Wert)



- Der EOM kann z. B. durch Verändern folgender Parameter beeinflusst werden:
 - Verändern der Anzahl der Beschichtungshübe
 - Verändern des Rinnenradius der Beschichtungsrinne
 - Verändern des Feststoffgehalts der Kopieremulsion


EOM bei zunehmenden Beschichtungshüben

Gewebe 150-31 | AZOCOL POLY-PLUS S | 1,25 mm Rinnenradius

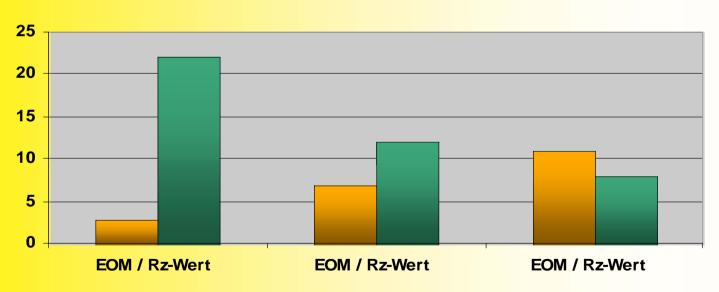

EOM bei unterschiedlichen Rinnenradien

Gewebe 120-34 | 2 x DS / 2 x RS | AZOCOL POLY-PLUS S

EOM bei zunehmendem Feststoffgehalt

Gewebe 120-34 | 2 x DS / 3 x RS | 1,25 mm Rinnenradius

Reduzieren des Rz-Wertes


 Der Rz-Wert sollte grundsätzlich kleiner als 10 µm, aber nicht kleiner als 4 µm sein

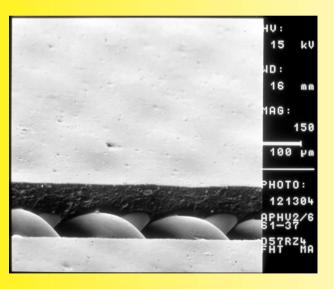
- Der Rz-Wert bei einer Emulsionsbeschichtung kann z. B. durch Verändern folgender Parameter beeinflusst werden:
 - Verändern des Schichtaufbaus über dem Gewebe
 - Nachbeschichten mit Zwischentrocknung

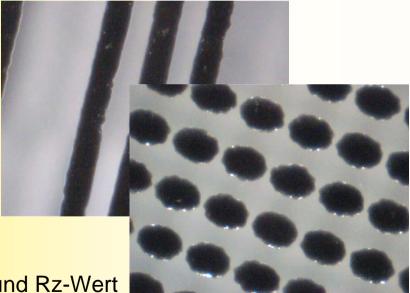
Rz-Wert bei zunehmendem EOM

Gewebe 120-34 | AZOCOL POLY-PLUS S

- Nachbeschichten mit Zwischentrocknung
 - Je größer die Anzahl der Nachbeschichtungshübe auf der Druckseite, desto niedriger der Rz-Wert
 - 2- bis 3-mal Nachbeschichten ist in der Regel ausreichend

Schablonenherstellung mit Kapillarfilm




Schablonenherstellung mit Sefar PCF-Gewebe

Beispiele für eine optimale Schablonenherstellung

Optimaler EOM und Rz-Wert