
Glas als Werkstoff

- Glasherstellung
- Glasarten / Eigenschaften / Anforderungen
 - Verpackungsglas
 - Wirtschaftsglas
 - Flachglas
 - Technisches Glas

Glas als Werkstoff

- Historische Entwicklung des erschmolzenen Glases
- Rohstoffe zur Glasherstellung
- Schmelze und Formgebung
- Oberflächen und Eigenschaften

Historische Entwicklung

- 4000 v. Chr.: Glasperlen in Ägypten
- Um 1500 v. Chr.: Erste Glasgefäße in Ägypten aus dem Dreistoffsystem Na₂O-CaO-SiO₂ nachgewiesen
- Um die Zeitwende: Erfindung der Glasmacherpfeife im Mittelmeerraum
- 1. Jh.: Erste in Hohlformen geblasene Gläser
- um 600 erste Kirchenfenster aus Glas
- 11. Jh.: Venedig Hauptstadt der Glasherstellung,
 1291 Verlegung nach Murano

Historische Entwicklung

- 1607: erste Glashütte in Amerika (Jamestown, Virginia)
- 1635: erste Glashütte in Russland
- 1859: halbautomatische Flaschenblasmaschine
- 1903: Owens entwickelt Flaschenglasmaschine (60 T Bierflaschen/Schicht)
- 1906: Fourcault entwickelt Flachglasziehmaschine
- 1916: Libbey-Owens-Ziehverfahren für Flachglas
- 1959: Pilkington entwickelt Floatglasprozess

Rohstoffe zur Glasherstellung Behälterglas

Natürliche Rohstoffe ca. 40 %

Quarzsand (SiO₂) ca. 70 %

Soda (Na₂O) ca. 13 %

Kalk (CaO) ca. 10 %

sowie Pottasche (Kaliumkarbonat), Dolomit, Feldspat.

Metallionen (zur Färbung), Läutermittel (zum Entfernen der

Blasen)

Glasscherben ca. 60 %

Bei Grünglas bis zu 80 %

Bei Braunglas bis zu 75 %

Bei Weißglas bis zu 60 %

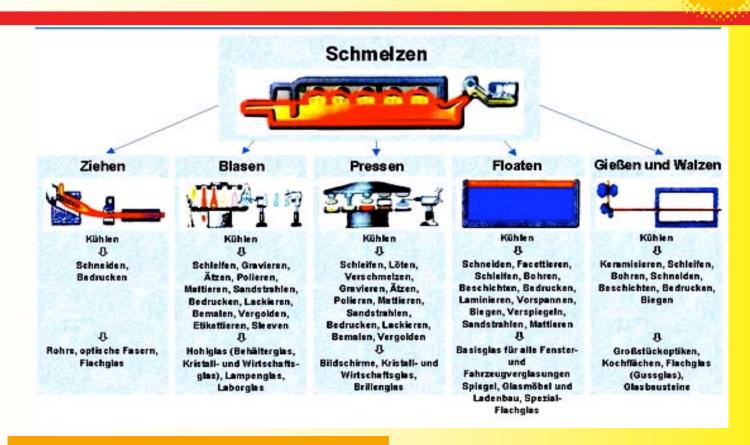
Rohstoffe zur Glasherstellung Floatglas

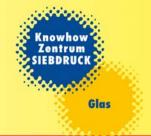
- 69 74 % Quarzsand (SiO₂)
 Glasbildner / Netzwerkbildner
- 10 16 % Soda (Na2O) / Pottasche (K2O)
 Glaswandler / Flussmittel
- 5 14 % Kalkstein (CaO) Stabilisatoren
- 0 6 % Dolomit (MgO)
 Stabilisatoren
- 0 5% weitere Rohstoffe (davon ca. 25 % saubere Glasscherben)

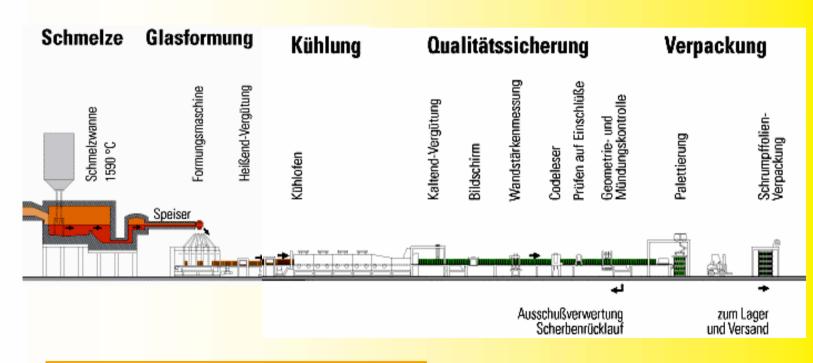
Wichtige Glasarten

- Kalk-Natron-Glas
 Behälterglas, Hohlglas, Flachglas
- Borsilikatglas
 auch Jenaer Glas. Gegen große Temperatur differenzen beständig. Boranteil ca. 5 % 8 %
- Bleikristallglas
 Gläser mit starkem Lichtbrechungsvermögen.
 Bleianteil 30 % 40 % PbO
- Quarzglas

Einzigartige optische, mechanische und thermische Eigenschaften. Unverzichtbar bei der Herstellung von High-Tech-Produkten.

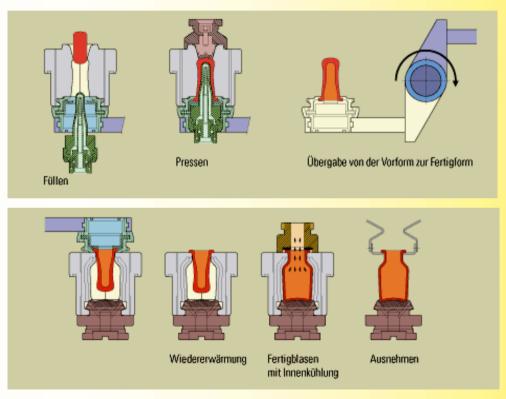

Wichtige Glasarten


Zusammensetzungen wichtiger Gläser (Angaben in Gewichtsprozent)										
Glasart	SiO ₂	Al ₂ O ₃	Na ₂ O	K ₂ O	MgO	CaO	B_2O_3	PbO	TiO ₂	F
Quarzglas	100	-	-	-	_	-	-	-	-	-
Kalk-Natron-Glas	72	2	14	_	-	10	-	-	-	-
Floatglas	72	1,5	13,5	_	3,5	8,5	-	-	-	-
Bleikristallglas	58	-	4	9	-	-	2	24	-	-
Borsilikatglas	80	3	4	0,5	-	_	12,5	-	-	-
E-Glas	54	14	_	_	4,5	17,5	10	_	_	-
Email	40	1,5	9	6	1	-	10	4	15	13


Glasherstellung Übersicht

Glasherstellung Behälterglas Übersicht

Schmelze und Formgebung Behälterglas


- Glasschmelze ca. 1600 °C
- Portionierte Glastropfen zur Form ca. 1.200 °C

Formgebung

- → Press-Verfahren
- → Press-Blas-Verfahren
- → Blas-Blas-Verfahren

Schmelze und Formgebung Behälterglas

Glasarten / Eigenschaften / Anforderungen

- Verpackungsglas
- Wirtschaftsglas
- Flachglas
- Technisches Glas

Verpackungsglas

Eigenschaften Verpackungsglas

- Getränkeflaschen (Einweg / Mehrweg) immer mit Kaltendvergütung
- Konservengläser (Einweg) immer mit Kaltendvergütung
- Kosmetikflakons (Einweg)
 in der Regel ohne Kaltendvergütung

Verpackungsglas

Anforderungen Verpackungsglas

- Hohe Kratzfestigkeit (Transport, Fülllinie)
- Laugenbeständigkeit (NaOH)
- Feuchtigkeitsfest (Pasteurisierung)
- Füllgutbeständig (Alkohol, Parfüm)

Wirtschaftsglas

Eigenschaften

in der Regel ohne Kaltendvergütung

- Trinkgläser
- Aschenbecher
- Vasen
- Schalen

Wirtschaftsglas

Anforderungen

- Spülmaschinenbeständigkeit
 - Haushaltsspülmaschine, 250 Umläufe
 - Industriespülmaschine, 1500 Umläufe
- Kratzfest, Fingernageltest

- Bei Flachglas handelt es sich in der Regel um Floatglas.
- Das Verfahren wurde 1959 von Pilkington für Kalk-Natronsilicat-Glas erstmals vorgestellt. Seit 1993 wird auch Borosilicatglas in einer Microfloatanlage der Jenaer Glaswerke (Schott) hergestellt.
- Heute existieren weltweit mehr als 120 Floatglasanlagen, davon 11 Anlagen in Deutschland.
- Im Floatglasverfahren läuft das geschmolzene Glas über eine mit geschmolzenem Zinn gefüllte Wanne. Es erreicht dabei eine sehr gleichmäßige Dicke und ohne Schleifen und Polieren Spiegelglasqualität.
- Moderne Floatanlagen produzieren ca. 600 t Glas von 4 mm Dicke pro Tag.

- VG = Verbundglas
 - eine fest verbundene Glaseinheit, die aus mindestens zwei Scheiben und einer z\u00e4helastischen Kunststoffzwischenschicht besteht. PVB-, EVA-, SPG-Folie oder Gie\u00dfharz
- VSG = Verbundsicherheitsglas
 - Verbundglas mit Sicherheitseigenschaften
- ESG = Einscheibensicherheitsglas
 - Thermisch vorgespanntes Glas
 - (Verletzungsschutz, erhöhte Biegefestigkeit / Stoß- und Schlagfestigkeit / Temperaturwechselbeständigkeit).
- TVG = Teilvorgespanntes Glas
 - Thermisch vorgespanntes Glas i.d.R. zur VSG-Herstellung

- Wichtige Anwendungsbereiche im Bauwesen
 - Kalk-Natronsilicat-Glas: Float-, Ornament-, Pressglas, Glasfaser, Dämmstoffe aus Glas Borosilicatglas: Floatglas
- Die Basisgläser werden unterschieden nach der Art ihrer Herstellung:

Floatglas: hergestellt durch Aufgießen und Fließen =

Flachglas, auch aus Borosilicatglas

Gußglas: hergestellt durch Gießen und Walzen =

Flachglas

Pressglas: hergestellt durch Pressen = Bauhohlglas

 Ca. 15 – 25 % der Flachglasproduktion werden für die Fahrzeugproduktion eingesetzt.

Eigenschaften

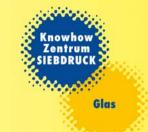
- Innenwendungen
 - Möbel (Tische, Schränke, Vitrinen, Bad)
 - Spiegel
 - Fliesen
 - Trennwände
 - Blenden für Lichtschalter, Sprechanlagen
 - Spielautomaten

Eigenschaften

- Außenanwendungen
 - Automotive
 - Architektur
 - Schallschutz
 - Wärmeschutz
 - Isolierschutz
 - Glasschilder
 - Solar

Glasbedruckung Flachglas

Anforderungen Flachglas Innenbereich


- Auf Glas
 - Kratzfest / wischfest
 - Glasreinigerbeständig
 - Kurzfristig Feuchtigkeitsbeständig
- Hinter Glas
 - Keine mechanische Anforderungen
 - Verspiegelbar
 - Verklebbar (Fliesen, VSG)
 - Feuchtigkeitsbeständig (Badezimmer)

Glasbedruckung Flachglas

Anforderungen Flachglas Außenbereich

- Anforderungen variieren je nach Einsatzgebiet
- Garantien schwanken von 5 bis 30 Jahren
 - UV-beständig
 - Feuchtigkeitsbeständig
 - Kratzbeständig
 - Laminierbar

Eigenschaften

- hoher elektrischer Widerstand für hermetische Versiegelung
- herausragende Langzeitfestigkeit in korrosiven Umgebungen
- hohe Glastransformationstemperatur bei Einsatz unter hohen Temperaturen
- Quarzglas
- Borlilikatglas

- Anwendungen
 - Technische Gläser kommen häufig zum Einsatz in der:
 - Elektronik-Verpackungsindustrie
 - Automobilindustrie
 - Medizinindustrie

Produkte

- Dünnglas, Microsheets & Displayglas
- Blockglas, Barrenglas & Walzglas
- Oberflächenspiegel, Vorderflächenspiegel, Optische Spiegel
- Glas für die Ofenindustrie
 - Schauglas für Öfen
 - Einsätze für Kachelöfen
 - Funkenschutz für offene Kamine
- Glas für die Optische Industrie
- Technische Glaskeramik

- Hersteller
 - Schott Glas AG, Mainz
 - Glaswerke Ilmenau
 - Berliner Glas KGaA
 - GvB, Herzogenrath

